
3340 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

q 2001 American Meteorological Society

Adjoint Sensitivity Analysis of Atmospheric Dynamics:
Application to the Case of Multiple Observables

EUGENE A. USTINOV

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 6 March 2000, in final form 25 May 2001)

ABSTRACT

The matrix approach to the adjoint sensitivity analysis of atmospheric models with multiple observables is
presented. The approach is developed as a straightforward generalization of the scalar case originally devised
by Marchuk in the 1960s for applications in atmospheric remote sensing based on the use of the adjoint equation
of radiative transfer. According to the commonly accepted viewpoint, the solution of the adjoint problem cor-
responding to the forward problem formulated with respect to an n vector of variables, is also an n vector. It
is shown that in the general case of m observables this adjoint solution should have the form of an n 3 m
matrix. Then, the m 3 N matrix of sensitivities of m observables to N model parameters can be directly evaluated
from the single matrix adjoint solution rather than from multiple vector adjoint solutions computed for each of
m observables. Potentially, this can provide appreciable savings of computer time. A general operator–matrix
presentation of the approach is given and its application to the sensitivity analysis of a simple zero-dimensional
radiative balance model with two field variables and two observables is considered. The results are validated
by numerical experiments.

1. Introduction

Currently, there exists a wide variety of models of
atmospheric dynamics (see, e.g., Trenberth 1992). The
simplest zero-dimensional models describe the spatial
averages of the atmospheric field variables. The one-
dimensional (1D) models deal with vertical profiles of
horizontally averaged variables or with latitudinal cross
sections of variables averaged vertically and zonally.
The 2D and 3D models add capability to cover the lat-
itudinal and longitudinal variations. There is also a great
variety of timescales used, starting from the models of
paleoclimate involving the geological timescales and
proceeding toward the models of modern climate, and
models of interannual, seasonal, synoptic, and diurnal
variations, which are used to forecast the long-term and
short-term weather phenomena. The most sophisticated
models involve integration of the full system of prim-
itive equations of atmospheric motion.

Notwithstanding this diversity of models of atmo-
spheric dynamics, all of them have some common gen-
eral features. There are a number of atmospheric var-
iables that quantify the simulated state of the atmo-
sphere, and there are also a number of atmospheric pa-
rameters that specify the atmospheric model itself. In
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general, the models are described by nonlinear differ-
ential equations with initial value conditions and/or
boundary conditions. As any model has to be eventually
tested against observations, an important component of
its mathematical description is also a set of observable
results (observables), which are specified by the pro-
cedure of their computation from atmospheric variables.
These observables can represent a snapshot of atmo-
spheric variables at a given instant, temporal behavior
of the observables at given location(s), some space and/
or time averages, or some combination of the above.

For a given model, the observables are dependent on
the model parameters, and the capability to estimate the
sensitivity of observables to these parameters is as im-
portant as the capability to compute the observables
themselves. Studies of the radiative forcing due to var-
iations of the content, spatial distribution, and temporal
behavior of greenhouse atmospheric gases and of aero-
sol present just one example of where such sensitivity
analysis is important. Computation of sensitivities by
plain variations of atmospheric parameters may become
impractical as the number of parameters increases. If
spatial distribution of atmospheric parameters has to be
taken into account, then variation of them, layer by lay-
er, grid cell by grid cell, can easily result in insur-
mountable requirements on the computer resources
needed.

An alternative approach to sensitivity analysis in the
atmospheric dynamics was suggested in 1970s by Mar-
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chuk (1974, 1975a,b), a decade after he initially intro-
duced this approach in atmospheric remote sensing
(Marchuk 1964). Quantitatively, the sensitivities of the
observables are derivatives with respect to the atmo-
spheric parameters considered: partial derivatives, as in
the zero-dimensional models; and variational deriva-
tives if spatial fields of both observables and atmo-
spheric parameters are involved in models with one or
more dimensions. The above plain layer-by-layer, cell-
by-cell variation procedure represents essentially a fi-
nite-difference approach to evaluation of these deriva-
tives when only numerical solutions of systems of equa-
tions of atmospheric dynamics are available. It turns out
that the solution of the corresponding system of adjoint
equations provides an efficient and elegant way to com-
pute sensitivities to the model parameters. A single so-
lution of the adjoint system for a given atmospheric
model can be used to compute the sensitivities in a way
that is not too dissimilar from that of computing the
observables themselves from the solution of the given
system of equations of atmospheric dynamics.

The adjoint approach to sensitivity analysis was later
developed by Cacuci (1981a,b) in application to the
general nonlinear case of a system of equations with
initial and boundary conditions. These results were ap-
plied to the adjoint sensitivity analysis of the radiative–
convective model (Hall et al. 1982; Hall and Cacuci
1983), climate models (Cacuci and Hall 1984), and the
general circulation model (Hall 1986). Albeit very gen-
eral, the mathematical framework developed by Cacuci
(1981a,b) was dealing with the case of one observable
in the form of a single scalar functional of atmospheric
variables and model parameters. Meanwhile, in the case
of multiple variables, it is of considerable interest to be
able to perform the sensitivity analysis for individual
observables without solving the adjoint problem for
each of them separately. While the adjoint approach to
sensitivity analysis rapidly evolves toward applications
to more sophisticated and more realistic models (see,
e.g., Kaminski et al. 1999a,b; Vukicevic and Hess 2000;
and Li et al. 2000), the ability of direct treatment of
multiple observables becomes more and more relevant.

The aim of this paper is to present a straightforward
matrix generalization of the formalism of adjoint sen-
sitivity analysis from the scalar case of one variable–
one observable devised by Marchuk (1964) for atmo-
spheric remote sensing (see also Ustinov 1991, 1992,
2001), to the case of multiple variables–multiple ob-
servables that is applied here to the atmospheric dy-
namics. In the most general case, the vector of observ-
ables can be construed as a nonlinear operator acting
on the vectors of atmospheric variables and model pa-
rameters. In many practical applications of atmospheric
modeling, the vector of observables can be construed
as a linear operator representing some weighted aver-
ages over space and/or time of separate atmospheric
variables or of any linear combination of them. Thus,
the procedure of computing the observables involves,

in general, a matrix transformation; in the case of ob-
servables computed from separate atmospheric variables
the transformation matrix is diagonal. As shown in sec-
tion 3, in general case, this matrix is constructed from
the right-hand terms of the matrix differential equation
and initial condition of the adjoint problem of atmo-
spheric dynamics. This dictates the matrix nature of the
adjoint solution in the general case.

2. Nonlinear and linearized forward problems

In the following, we will use different superscripts to
distinguish between variables and parameters used in
the formulation of three interrelated problems. The var-
iables and parameters without superscripts refer to the
basic nonlinear forward problem represented by the sys-
tem of equations of atmospheric dynamics. The vari-
ables and parameters with prime (9) superscript refer to
the linearized forward problem based on the equations
of atmospheric dynamics, which are linearized in the
vicinity of the nonlinear solution and which describe
the perturbation of this solution due to perturbations of
parameters of the system. Finally, the star (*) superscript
denotes the adjoint variables that represent the solution
of the linear problem that is adjoint to the linearized
forward problem.

Let X(t) be an n vector of variables Xj(t), (j 5 1, . . .
n) describing the state of the atmosphere. Let a(t) be an
N vector of model atmospheric parameters, ai(t) (i 5
1, . . . N). The system of nonlinear equations describing
evolution of the atmospheric system together with the
initial conditions for variables Xj(t) can be written in
the form

dX
1 N (X, a) 5 0 (1)

dt

X(t ) 5 X . (2)0 0

Here N is a nonlinear operator that acts on the state
vector X in a way that depends on the vector of at-
mospheric parameters, a. Let X(t) be a solution of this
nonlinear model computed for the period of evolution
of the atmospheric system for the interval of time from
t 5 t0 to t 5 t1. Let R be an m vector of observables
Rk , (k 5 1, . . . m) obtained using the procedure of
observations that is specified by the n 3 m observation
matrix W(t) as convolved with the vector of variables
X(t) over the interval of integration [t0, t1]:

t1

TR 5 W (t)X(t) dt. (3)E
t0

For example, if the vector of observables R represents
the state vector X at a given instant, ts, then m 5 n and

W(t) 5 d(t 2 t )l,s (4)

where l is an n 3 n identity matrix and d(t) is the Dirac
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d function. If the observables represent the state vector
averaged over the period from ts1 to ts2, then

W(t) 5 [u(t 2 t ) 2 u(t 2 t ]l,s1 s2 (5)

where u(t) is the Heaviside u function.
If the number of observables m is less than the number

of model variables n, then the observation matrix W(t)
has correspondingly a lower number of columns. And
if only one observable result is considered, the matrix
W(t) degenerates into the n vector. If, in addition, the
time dependence of W(t) is the same for all its elements,
then it can be rewritten in the form of the n vector d
multiplied by a scalar function:

W(t) 5 W(t)d. (6)

In this particular case, Eq. (3) can be rewritten as [cf.
Eq. (2) of Hall and Cacuci (1983)]

t1

TR 5 W(t)d X(t) dt. (7)E
t0

The general aim of sensitivity analysis is to evaluate
the responses of the vector of observables R to varia-
tions of the vector of parameters a(t). Let these param-
eters experience some variations da(t) in the vicinity of
values a(t) for which the solution of the nonlinear sys-
tem X(t) was found. We will refer to X(t) as to a basic
nonlinear solution. Let the nonlinear problem, Eqs. (1)
and (2), be linearized in vicinity of X(t) in the form

dX9
1 C(t)X9(t) 5 S (t) (8)edt

X9(t ) 5 S . (9)0 c

Here C(t) is the n 3 n matrix and Se(t) is an n vector.
Both of them are dependent on the given basic solution
X(t). If, in addition to the atmospheric parameters, initial
conditions are also varied, then Sc ± 0. Subscripts e
and c stand for ‘‘equation’’ and ‘‘(initial) condition,’’
respectively.

In the next section, we will need to combine the ma-
trix differential equation and initial condition of the lin-
earized forward problem, Eqs. (8) and (9) into a single
linear operator equation using the scheme developed in
Ustinov (2001) for the scalar case of atmospheric ra-
diative transfer. For this purpose, we represent Eqs. (8)
and (9) in a general form of two linear operator equa-
tions:

L X9 5 S (10)e e

L X9 5 S at t 5 t , (11)c c 0

where linear operators Le and Lc represent linear oper-
ations on X9 in left sides of the equation and initial
condition [Eqs. (8), (9)].

In order to formulate the matrix adjoint problem in
the next section we also need a linearized version of
Eq. (3) to obtain the vector of corresponding pertur-
bations of observables R9 as expressed through X9:

t1

TR9 5 W (t)X9(t) dt. (12)E
t0

In the development of the adjoint matrix formalism in
the next section we will use the following definition.
Let A(t) be an n 3 m matrix function and B(t) be an
n-vector function. Their inner product (A, B) is defined
as an m vector in the form

t1

T(A, B) 5 A (t)B(t) dt. (13)E
t0

For the elements of the vector (A, B) we have
n

(A, B) 5 (A , B ) (k 5 1, . . . m), (14)Ok jk j
j51

where (Ajk, Bj) (j 5 1, . . . n; k 5 1, . . . m) are the inner
products of corresponding scalar functions Ajk(t) and
Bj(t). If m 5 n 5 1, then Eq. (13) becomes a definition
of an inner product of two scalar functions A(t) and B(t).
Using the definition Eq. (13), we can rewrite Eq. (12)
in the form

R9 5 (W, X9). (15)

In the particular case of one observable, Eq. (7) we have

R9 5 (Wd, X9). (16)

3. Adjoint operator and adjoint problem

In this section we will construct the adjoint operator
and adjoint problem corresponding to the linearized for-
ward problem [Eqs. (10), (11)] coupled with the pro-
cedure [Eq. (15)] of computation of the (linearized) ob-
servables from the linearized solution. These equations
are used to formulate the corresponding adjoint problem
in the form

L*X* 5 W (17)ee

L*X* 5 W at t 5 t . (18)cc 1

Following the scheme developed in Ustinov (2001), first
we will combine the differential equation and boundary
condition of the forward problem, Eqs. (10) and (11)
into a single operator equation,

LX9 5 S, (19)

and then we will find an operator L*, adjoint to L. As
was demonstrated in Ustinov (2001) for the scalar case,
this operator will naturally split into the operators L*e
and , corresponding to the differential equation of theL*c
adjoint problem and to a condition that is imposed here
at the end of the time interval t1. Then, based on the
derived form of the operator L* and on the given pro-
cedure [Eq. (15)] of computation of observables R9, we
derive the matrices We and Wc in the right sides of Eqs.
(17) and (18).



1 NOVEMBER 2001 3343U S T I N O V

To combine Eqs. (10) and (11) into a single linear
operator equation in the form of Eq. (19), we observe
that Eq. (10) holds for the whole time interval [t0, t1]
while Eq. (11) holds for the instant t 5 t0 only. After
multiplying Eq. (11) by the time-weighting factor d(t
2 t0) we can add it to Eq. (11) to obtain a single operator
equation:

[L 1 d(t 2 t )L ]X9 5 S 1 d(t 2 t )S .e 0 c e 0 c (20)

Comparing Eqs. (20) and (19) we obtain the operator
L and the right-hand term S of the forward problem,
[Eq. (19)] in the form

L 5 L 1 d(t 2 t )L (21)e 0 e

S 5 S 1 d(t 2 t )S . (22)e 0 c

From Eqs. (8) and (9) we have

d
L 5 1 C(t) (23)e dt

L 5 I, (24)c

where l is an identity matrix. After substitution into Eq.
(21) we obtain

d
L 5 1 C(t) 1 d(t 2 t )I. (25)0dt

As in the scalar case, to obtain the operator L*, which
is adjoint to the operator L [Eq. (25)], we use the formal
definition of L* as an operator satisfying the identity

(X*, LX9) 5 (L*X*, X9) (26)

for arbitrary functions X9(t) and X*(t), which can form
the inner product (X*, X9) as defined by Eq. (13). In
other words, we demand that the adjoint operator L*
satisfies the equality

t t1 1

T TX* LX9 dt 5 (L*X*) X9 dt. (27)E E
t t0 0

Substituting operator L as defined by Eq. (25) into the
left side of Eq. (27) we have

t1 dX9
T T(X*, LX9) 5 X* (t) 1 X* (t)C(t)X9(t) dtE [ ]dtt0

T1 X* (t )X9(t ). (28)0 0

Performing the integration by parts in Eq. (28) we obtain

Tt1 dX*
T(X*, LX9) 5 2 1 C (t)X*(t) X9(t) dtE [ ]dtt0

T1 X* (t )X9(t ). (29)1 1

The right-hand side of Eq. (29) can be represented in
the form of the right-hand side of Eq. (27) if we let

d
TL* 5 2 1 C (t) 1 d(t 2 t)I. (30)1dt

This means that the operator L* of the adjoint problem
corresponding to the forward problem [Eqs. (10), (11)]
can be represented in the form of a sum of two com-
ponents:

L* 5 L* 1 d(t 2 t)L*,e 1 c (31)

where

d
TL* 5 2 1 C (t); and (32)e dt

L* 5 I. (33)c

From Eq. (31) we see that the operator is actingL*e
on the whole time interval [t0, t1] while operator isL*c
acting only at the final instant t1 of this interval. Thus,
the adjoint problem corresponding to Eqs. (10) and (11)
can be represented in the form of Eqs. (17) and (18).
Substituting the obtained expressions for and intoL* L*e c

Eqs. (17) and (18) we have

dX*
T2 1 C (t)X*(t) 5 W (t) (34)edt

X*(t ) 5 W . (35)c1

The matrix right-hand terms, We and Wc, are defined
using the relation

W 5 W 1 d(t 2 t)W ,e c1 (36)

which is obtained by multiplying Eq. (33) by d(t1 2 t),
adding it to Eq. (32) and comparing with the general
form of the adjoint problem

L*X* 5 W, (37)

with the matrix right-hand term W. If, for example, the
vector of observables R9 [Eq. (12) is defined by some
weighted averages over the interval [t0, t1], then Wc [
0 and W(t) 5 We(t). If, on the other hand, R9 is defined
by the state vector X9 at the final instant t1, then We(t)
[ 0 and W(t) 5 d(t1 2 t)Wc.

It should be emphasized that the adjoint problem
[Eqs. (34), (35)] is formulated with the matrix right-
hand terms, We(t) and Wc, which have the number of
columns corresponding to the number of observables.
The adjoint solution is also a matrix with the same di-
mensions. The matrix C(t) used in the differential equa-
tion, Eq. (34) has to be computed only once at each
time step of integration, independent of the number of
observables. In other words, the matrix differential
equation Eq. (34) is integrated for all columns of the
adjoint solution simultaneously. This is favorable as
compared to separate integration of Eq. (34) for each
observable because the matrix CT(t) is not dependent
on individual observables. Therefore, in the computer
program, it can be evaluated outside of the loop over
individual observables, resulting in corresponding sav-
ings of computing time.
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4. Applications to the sensitivity analysis

The solution X* of the adjoint problem [Eq. (37)] is
instrumental in two respects. First, it provides an alter-
native way to compute the vector of observables, in
addition to that provided by Eq. (15):

R9 5 (X*, S). (38)

Second, and more importantly, the adjoint solution X*
makes it possible to directly express the variation of the
vector of observables R through the variation of the
operator L and the right-hand term S of the forward
problem, Eq. (19):

dR 5 (X*, dS 2 dLX9). (39)

Since both operator L and right-hand term S are ex-
pressed through the parameters ai(t) (i 5 1, . . . N), we
can obtain the explicit expression for the m 3 n sen-
sitivity matrix of the vector of observables R to the
vector of model parameters a(t). It has the form of a
variational derivative dR/da(t) and enters the relation
between variations dR and da(t):

t1 dR
dR 5 da(t) dt. (40)E da(t)t0

[A brief summary of necessary information on varia-
tional derivatives can be found, e.g., in the appendix to
Ustinov (2000).] From Eq. (39) we have

dR dS dL
5 X*, 2 X9 . (41)1 2da(t) da(t) da(t)

Equation (38) can be derived by multiplying the for-
ward problem, Eq. (19), by X* and multiplying the ad-
joint problem, Eq. (37), by X9 to obtain

(X*, LX9) 5 (X*, S) (42)

(L*X*, X9) 5 (W, X9). (43)

As the left-hand terms of Eqs. (42) and (43) are equal
by definition of the adjoint operator L*, and the right-
hand term of Eq. (43) equals R9 [cf. Eq. (15)], we im-
mediately obtain Eq. (38).

To obtain Eq. (39) we consider the perturbed line-
arized forward problem:

(L 1 dL)(X9 1 dX) 5 (S 1 dS). (44)

Subtracting from Eq. (44) the linearized forward prob-
lem, Eq. (19), and neglecting the second-order term con-
taining dLdX we obtain

LdX 1 dLX9 5 dS. (45)

Multiplying Eq. (37) by dX and Eq. (45) by X* we have

(L*X*, dX) 5 (W, dX) (46)

(X*, LdX) 1 (X*, dLX9) 5 (X*, dS). (47)

Taking variation of Eq. (15),

dR 5 (W, dX), (48)

and applying the definition of the adjoint operator L*,
Eq. (26), to the adjoint solution X* and to the variation
of forward solution dX we have

(X*, LdX) 5 (L*X*, dX). (49)

Finally, subtracting Eq. (47) from Eq. (46) and using
Eqs. (48) and (49) we obtain Eq. (39).

In the particular case when X9 5 0, Eq. (39) yields
the variation R in the vicinity of the basic nonlinear
solution X of the forward problem in its initial form,
Eqs. (1) and (2). The equation

dR 5 (X*, dS) (50)

and the expression for the sensitivity matrix, Eq. (41),
is reduced to the form

dR dS
5 X*, . (51)1 2da(t) da(t)

In the next section, the matrix approach to sensitivity
analysis developed above is applied to a simple radiative
balance model of atmospheric dynamics with two var-
iables and two observables.

5. Sensitivity analysis of a simple radiative balance
model

Two components of the state vector in this model are
temperature T and cloudiness n:

T(t)
X(t) 5 . (52)1 2n(t)

The model is described by two equations with corre-
sponding initial value conditions for T and n:

dT n
4c 1 1 2 sT 5 (1 2 nA)Ep (1 2dt 2

(0)dn T 2 T
t 1 n 5 (53)

dt Dt

T(t ) 5 T , n(t ) 5 n . (54)0 0 0 0

The first equation of the system, Eq. (53), is the radiative
balance equation with solar heating dependent on the
cloudiness. If cloudiness n 5 0, then the radiative bal-
ance is determined by solar heating E( and thermal
cooling sT4 of the surface. If cloudiness n 5 1, then
the radiative balance is determined by solar heating (1
2 A)E( and thermal cooling sT4/2 of opaque clouds
with cloud tops at the tropopause. The equation for
cloudiness includes a characteristic time constant, t, and
results in a linear dependence of n on T in the equilib-
rium state.

The 2 vector of observables R is defined by Eq. (3)
with the 2 3 2 matrix W(t) specified under assumption
that the observables R1 and R2 are obtained as some
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TABLE 1. Input data used in the numerical experiments.

Parameter Input values

Thermal capacity cp 106 J K21 m22

Cloudiness time constant t 104 s
Cloudiness parameter T(0) 273.16 K
Cloudiness parameter DT 100 K
Initial temperature T0 273.16 K
Initial cloudiness n0 0
Day duration D 8.64 3 104 s
Initial moment of integration t0 0 s
Final moment of integration t1 t0 1 7D
Albedo A 0.8
Insolation:

Variable max [E(0 cos2p (t 2 t0)/D, 0]
Constant E(0/p

Solar constant E(0 1400 W m22

Observation matrix W(t) [u(t 2 t2) 2 u(t 2 t1)]I
Initial moment of observations t2 t1 2 D

weighted averages of two linear combinations of com-
ponents X1 and X2 of the state vector X within the in-
tegration period [t0, t1]. Then,

W (t) 5 W(t) (55)e

W 5 0. (56)c

For the sake of simplicity we assume that the only model
parameter to vary here is the albedo of clouds A.

Linearization of the nonlinear forward problem, Eqs.
(53) and (54), in the vicinity of some basic nonlinear
solution, X(t), yields

dT9 s
3 4c 1 4sT (t)T9 1 2 T 1 AE n9 5 2A9E (t)p ( (1 2dt 2

dn9 1
t 2 T9 1 n9 5 0 (57)

dt DT

T9(t ) 5 0, n9(t ) 5 0. (58)0 0

The system [Eqs. (57), (58)] can be presented in the
form of the linearized forward model [Eqs. (8), (9)],
where 2 3 2 matrix C(t) and 2 vectors Se(t) and Sc have
the form

 4 1 s
3 4sT 2 T 1 AE(1 2 c c 2p p

 C(t) 5 (59)
1 1 2

tDT t 

1 
2 A9E (t) (cp S (t) 5 (60)e  

0 

S 5 0. (61)c

Corresponding adjoint model can be obtained directly
from the general matrix form [Eqs. (34), (35)] by sub-
stitution of the matrix C(t) [Eq. (59)]. Both the solution
X*(t) and the right-hand terms We(t) and Wc are 2 3 2
matrices. For each kth column of these matrices we have
(k 5 1, 2)

dX* 4 11k 32 1 sT X* 2 X* 5 (W )1k 2k e 1kdt c tDTp

dX* 1 s 12k 42 1 2 T 1 AE X* 1 X* 5 (W ) (62)( 1k 2k e 2k1 2dt c 2 tp

X* (t ) 5 (W ) , X* (t ) 5 (W ) . (63)1k 1 c 1k 2k 1 c 2k

To use the variational relation for the vector of ob-
servables, dR [Eq. (39)], we have to evaluate the var-
iations of the operator L [Eq. (25)] and the right-hand
term S [Eq. (22)]. Substituting the matrix C(t) [Eq. (59)]

into Eq. (25) and taking the variation with respect to
albedo A, we have

E (0 dA cp dL 5 . (64) 
0 0 

Substituting vectors Se(t) and Sc [Eqs. (60), (61)] into
Eq. (22) and taking the variation with respect to A we
have

E (2 dA cp dS 5 . (65) 
0 

Evaluating

E (2 n9dA cp dLX9 5 , (66) 
0 

substituting Eqs. (65) and (66) into the expression for
dR [Eq. (39)], and performing a matrix multiplication,
we have

t1 1
dR 5 X* (t) 2 E (t)(1 1 n9(t)) dA(t) dtk E k1 ([ ]cpt0

(k 5 1, 2), (67)

whence we immediately obtain

dR 1k 5 2 E (t)(1 1 n9(t))X* (t) (k 5 1, 2). (68)( k1dA(t) cp

6. Numerical experiments

The summary of the input data used in the numerical
experiments is presented in Table 1. The value of cp was
intentionally taken much less than the typical value for
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FIG. 1. Basic solution of the nonlinear forward model for the var-
iable (solid line) and constant (dashed line) insolation: (a) temper-
ature; (b) cloudiness. The constant insolation corresponds to the di-
urnal average of the variable insolation.

FIG. 2. Same as Fig. 1 but for the solution of the linearized forward
model. Systematic deviations of the solutions for constant insolation
from those for the variable insolation are due to finite value of the
albedo increment A9 5 0.1 used in the simulation.

the terrestrial atmosphere–surface system to ensure the
significant diurnal variations of temperatures. The re-
maining parameters roughly correspond to the terrestrial
atmosphere–surface system. The observables simulated
were the averages of temperature and cloudiness over
the last day of the total period of integration:

^T&
R 5 . (69)1 2

^n&

The single model parameter varied in these numerical
experiments was the albedo A. For simplicity, its basic
value and its variations were kept constant over time.
Thus, sensitivities of observables to this parameter re-
duce to partial derivatives ]^T&/]A and ]^n&/]A. The ma-
trix of these partial derivatives is obtained from the
corresponding matrix of variational derivatives:

t1]R dR
5 dt. (70)E]a da(t)t0

This expression can be derived by substitution of an
arbitrary constant variation da(t) [ da into the expres-
sion for the variation dR, Eq. (40) which becomes a
differential dR:

t t1 1dR dR
dR 5 da dt 5 dt daE E[ ]da(t) da(t)t t0 0

]R
5 da. (71)

]a

With arbitrary da, the last equality of Eq. (71) results
into Eq. (70).

Figure 1 shows the results obtained for the nonlinear
model with variable and constant insolation. The ob-
servables simulated for the case of variable insolation
have the values

^T& 294.0
5 .1 2 1 2

^n& 0.207

Figure 2 shows the solution of the linearized forward
problem. The increment A9 5 0.1 was used for the lin-
earization. Figure 3 shows the matrix solution of the
corresponding adjoint problem. The values of linearized
observables computed for the case of variable insolation
using the solutions of both linearized forward and ad-
joint problems are given below:



1 NOVEMBER 2001 3347U S T I N O V

FIG. 3. Matrix solution of the adjoint model for the variable (solid line) and constant (dashed line) insolation; (a)–(d) the separate matrix
elements of the solution (t) (j, k 5 1, 2).*Xjk

^T9& 21.06
5 .1 2 1 2^n9& 20.0105

The differences between the results obtained from the
solutions of the linearized forward system and of the
adjoint system due to numerical integration errors are
within the accuracy of values presented.

Sensitivities for the basic nonlinear solutions were
evaluated using the solution of the adjoint problem. The
values for the case of variable insolation are presented
below:

]^T&/]A 210.6
5 .1 2 1 2]^n&/]A 20.105

These values can be compared with the linearized ob-
servables obtained above for A9 5 0.1. As it can be
expected, they differ by factor of 1/A9 5 10.

7. Discussion and conclusions

As demonstrated in the previous sections, the adjoint
sensitivity analysis can be naturally extended to the case
of multiple observables. In this case, the adjoint solution
becomes a matrix with dimensions corresponding to the
numbers of field variables and observables. Reducing
it to a vector (one-column matrix) forces us to deal with
a single observable, usually a composite one, construct-

ed from multiple observables, like the ‘‘distance’’ func-
tion between the modeled and observed data. It can be
anticipated that the procedure of direct construction of
the adjoint operator corresponding to that of the line-
arized forward problem as presented in section 3 will
also be applicable to the models with one or more spatial
arguments where the boundary conditions will become
necessary. The need for such boundary conditions is
especially clear in regional models where they should
be specified along the boundary of respective area. The
1D models are a logical first step here. Unfortunately,
the most evident candidate, the radiative–convective
model is not amenable to the straightforward lineari-
zation due to distinctly different behavior before and
after onset of convection. More simple 1D candidates
could be the zonally averaged energy balance models.

The variational data assimilation in meteorology us-
ing adjoint models (Talagrand and Courtier 1987) can
be another area of application of this matrix approach.
Here, a close analogy can be pointed out between var-
iational data assimilation and atmospheric remote sens-
ing. In atmospheric remote sensing, the computation of
weighing functions, which represent the sensitivities of
individual observables to profiles of atmospheric pa-
rameters, are routinely used to select the most infor-
mative spectral intervals and, correspondingly, the most
informative observables. Similarly, in variational data
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assimilation, the evaluation of sensitivities of individual
observables to the parameters of the atmospheric model
can help in selection of the most sensitive, most infor-
mative observables.

In conclusion, the comparison of the matrix approach
and the traditional vector approach to the adjoint sen-
sitivity analysis of multiple observables can be briefly
summarized as follows. The matrix of sensitivities of
all individual observables with respect to the model pa-
rameters is obtained at once if the matrix approach is
used. This matrix of sensitivities has to be constructed,
row by row, if the traditional vector approach is used.
Combined together, the vectors of sensitivities of in-
dividual observables yield the same matrix of sensitiv-
ities. Both vector and matrix approaches, when applied
to the same problem, yield identical results. However,
the matrix approach can provide substantial savings of
computer time.
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